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Theories of Gravity in 2 + 1 Dimensions 
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We discuss the failure of general relativity to provide a proper Newtonian limit 
when the spacetime dimensionality is reduced to 2 + 1 and try to bypass this 
difficulty by assuming alternative equations for the gravitational field. We 
investigate the properties of spacetimes generated by circularly symmetric matter 
distributions in two cases: weakening Einstein equations, and by considering 
the Brans-Dicke theory of gravity. A comparison with the corresponding 
Newtonian picture is made. 

1. I N T R O D U C T I O N  

The present attention theoretical physicists devote to lower-dimen- 
sional gravity has brought  to light the unsolved problem concerning 
the nonexistence of the Newtonian limit of  general relativity when the 
spacetime dimensionality d is less than four (Jackiw, 1985; Deser et al., 

1984). This results basically from the fact that when d = 2 + 1 the Rie- 
mannian curvature is completely determined by the Einstein tensor 
(R~w~ = E,vpc~GP~). For  d = 1 + 1 the situation is more drastic, since in 
this dimensionality G,v vanishes identically. As a consequence in the first 
case spacetime must be fiat in regions where matter  is absent. In the second 
case, as was pointed out by Jackiw (1985), "gravity has to be invented 
anew since general relativity cannot  even be formulated".  

In particular, if matter  creates no gravitational field outside its loca- 
tion, neither 'planetary '  motions nor gravitational waves are allowed to 
exist in a 2 + 1 spacetime. 

In this paper, we restrict ourselves to a (2 + l)-manifold and examine 
what happens to the above situation when the Einstein field equations a r e  
modified. Thus, we take up the classical problem of  determining the 
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gravitational field generated by a spherically (or, better, circularly) sym- 
metric distribution of  matter. We approach this problem in two different 
ways. First, we 'weaken' the Einstein equations in much the same way as  
did Jackiw (1985) i n his attempt to formulate gravity in 1 + 1 dimensions. 
Second, we consider the same problem in the light of the Brans-Dicke 
theory of  gravity. 

2. NEWTON'S THEORY OF GRAVITY IN 2 + 1 DIMENSIONS 

It is generally accepted that a Newtonian gravitational field due to a 
spherical matter distribution of mass M and radius ~ in a d = (n + 1)- 
dimensional spacetime should be expressed by the generalized law (see, for 
instance, Elmer and Olenick, 1982; Wilkins, 1984) 

g(r)  = --  G g / r  n - 1 (1)  

where G is a constant and r is the distance from the center of the 
distribution, with r > ~. Thus, if n = 2, this corresponds to the gravitational 
potential 

V(r)  = G M  ha r (2) 

Then, the equations of motion for a test particle of mass m put in a region 
exterior to the matter distribution would be given by 

m r 2 0  = const = L (3) 

mi" = L Z/mr 3 - G m M / r  (4) 

where r and 0 are polar coordinates and L is the angular momentum of the 
particle. On the other hand, the energy conservation equations yield 
directly 

mf'Z/2 = E - ( 1 / 2 m ) L  Z/r 2 - -  m M G  In r (5) 

with E being the total energy of the particle. 
It is clear from the latter equations that the particle cannot escape 

from the center of  force, the permissible orbits being bounded. An illustra- 
tive picture may be obtained if we display these orbits in the particle's 
phase space, where Pr is the radial component of  the momentum (see 
Figure 1). In this diagram the equilibrium point r0 [which has the topology 
of a center (Andronov et  al., 1973)] represents the circular orbit r = ro = 
L m  - I ( M G )  - 1/2, corresponding to the energy Eo = ( 1 / 2 m ) L / r ~  + m M G  In r0 
and a period z = 2 r c L ( r n M G ) - l .  So, we arrive at the conclusion that in a 
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Fig. 1. Phase space trajectories of a particle subjected to a gravitational field in a (2 + 1)- 
dimensional Newtonian universe. 

Newtonian universe with 2 + 1 dimensions no matter how large its energy 
is, a test particle is constrained to move within a bounded region of space. 

3. EINSTEIN'S THEORY OF GRAVITY IN 2 + 1 DIMENSIONS 

To find the motion of a test particle under the influence of the 
gravitational field generated by a matter distribution in any metric theory 
of gravity reduces to the problem of finding the spacetime geodesics. Thus, 
one has to know the geometry of that spacetime, which, in turn, must be 
determined from the gravitational field equations. 

As mentioned earlier, if one considers Einstein's theory of gravity in 
2 + 1 dimensions one is led to the conclusion that a test particle does not 
'feel' the gravitational field in regions where the matter is absent. The 
spacetime is fiat (R,~, = 0) and the geodesics are simple straight lines. 
Thus, the situation here seems to differ drastically from the Newtonian 
picture, specifically if we regard the previously analyzed problem of the 
motion of particles under the influence of circularly symmetric massive 
bodies. And, since the curvature is null everywhere except in the interior of 
the matter distribution, there is no way to obtain a Newtonian limit. 

Recently, there has been great interest in metric configurations exhibit- 
ing topological defects (Deser et al., 1984). Essentially, these refer to the 
properties of a locally fiat spacetime which nevertheless presents global 
features allowing one to distinguish it from a pure Minkowskian geometri- 
cal structure. The main quoted example of this phenomenon is the space- 
time generated by an infinite static matter string in 3 + 1 dimensions which 

�9 is described by a Riemannian flat geometry with bidimensional spatial 
conic sections (Vilenkin, 1981; Hiscock, t985). The (2+  1)-dimensional 
analog of this configuration may be generated by any circularly symmetric 
matter distribution. Since the geodesics in both cases are not simply 



2094 Romero and Dahia 

straight lines in a Minkowskian spacetime, particles moving in these conic 
geometries are said 'to detect' the gravitational field in a number of effects 
whenever global variables (which involves integration along a closed 
contour) are measured (Bezerra, 1990). However, as the trajectories of test 
particles in these spacetimes are not bounded, 'planetary' motions not 
being allowed, there is no possibility of a Newtonian limit to exist, 

4. JACKIW'S SCALAR EQUATION FOR GRAVITY IN 
2 + 1 DIMENSIONS 

As remarked before, the Einstein's tensor Guy vanishes identically in a 
(1 + 1)-spacetime manifold. An attempt to formulate the field equations in 
this dimensionality was put forward by Jackiw (1985). In this approach 
Einstein's equations 

G , v  = R~,v - ( 1 / 2 ) R  = T , v  ( 6 )  

are 'weakened' by replacing (6) by its trace. In this way, we are left with the 
scalar equation 

R = T (7) 

where T = T~ is the trace of the energy-momentum tensor. 
We shall assume (7) as a plausible field equation describing gravity 

also in a 2 + 1 manifold. Now, considering a static, circularly symmetrical 
matter distribution as the source of the curvature, the metric coefficients 
should be a function of the radial coordinate r only. Space T = 0 in regions 
where matter is absent, the equation 

R = 0  (8) 

reduces to a second ordinary differential equation involving the metric 
functions in the variable r. On the other hand, the most general form of a 
static, circularly symmetric field may be given by the line element 

d s  2 = e 2N d t  z - e 2e d r  2 - r ~ dO 2 (9) 

where N and P are functions of the radial coordinate r only (see, for 
example, Cornish and Frankel, 1991). However, if N and P are indepen- 
dent, then they cannot be determined by equation (8) alone. A way to 
bypass this difficulty is to reduce the number of degrees of freedom of the 
geometry by choosing a metric tensor with only one degree of freedom. A 
natural choice is to consider a static, circularly conformally flat metric 
given by 

d s  2 = f ( r ) ( d t  2 - d r  2 - r 2 dO 2) (10) 
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which, as we shall see later, has the property of leading to the correct 
(2 + 1)-Newtonian limit in the weak-field approximation. Putting (10) into 
(8), we get the equation 

f " -  ( ~  +f--' = 0  (11) 
\ ' + : /  T 

whose solution is given by 

f ( r )  = B In (12) 

where A -> 0 and B > 0 are constants. Thus, the conformally fiat solution 
of Jackiw's vacuum equation is given by the line element: 

ds 2 = B I n  ~ (dt 2 - dr 2 - r 2 dO 2) (13) 

This solution has a singularity, as may be readily seen by evaluating the 
value assumed by the invariant R , ~ R  uv at the surface r = A. However, as 
was pointed out by Cornish and Frankel (1991) (who found a similar 
solution in the weak-field approximation of equation (8)], this surface does 
not represent an event horizon, since light is not affected by the gravita- 
tional field nor does a change in the metric sigxlature take place. On the 
other hand, it is worthwhile to mention that as far as behavior at infinity 
is concerned this geometry presents no asymptotic flatness, and this is a 
question deserving a further comment. 

Let us investigate the motion of a massive test particle in this geome- 
try. We begin by writing down the geodesic equations: 

f d t / d s  = e (14a) 

f r  2 dO /ds = l (14b) 

where ~ and I are integration constants. Now, if we divide (13) by ds z and 
use(14) we get the following first integral: 

l 2 
tti---~2 + -~ + f ( r )  = tt (15) 
2 2 

in which we have put ~2 = #/2 and dot means derivative with respect to the 
time coordinate. Now, this equation may be regarded as the analog of (5), 
i.e., the law of energy conservation in Newtonian gravity, if we formally 

�9 define a gravitational potent ia l  energy given by V =f i r )  = B[ln(r/A)] 4. Then, 
we have an 'effective' potential V~ff= 12/r2+ B[ln(r /A)]  4 which determines 
the radial motion of the particle. A simple analysis of the form of V, er (see 
Figure 2) show us that the motion of particles in this spacetime is bounded, 
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Fig. 2. 

r ,  >, 

Effective potential determining the radial motion of a particle in (2 + 1)-dimensional 
Jackiw gravity. 

As in the case of Newtonian gravity, the equation r = r0, with r 0 correspond- 
ing to the minimum of Vefr(r), characterizes a circular motion of the particle 
around the center of the matter distribution. 

At this point, it is interesting to note that a particle with no angular 
momentum (l = 0) keeps oscillating around ro, which means that in addition 
to the usual repulsion force represented by the centrifugal term 12/r 2, the 
particle feels a kind of 'gravitational repulsion force' during parts of its 
motion. Such effect has no Newtonian analogy. However, apart from this, 
we conclude that in 2 + 1 dimensions the motion of particles in the spacetime 
of  equation (13), which represents a circularly symmetric solution of  
Jackiw's gravity, and the motion of  particles in Newtonian gravity exhibit 
a rather similar physical picture. 

Finally, we should point out that Jackiw's scalar equation (7) leads to 
the Newtonian limit for the metric (10) if we use the same argument due to 
Cornish and Frankel (1991) for a general conformaUy flat metric gin. =fn~v 
in 2 + l dimensions. 

5. B R A N S - D I C K E  T H E O R Y  O F  G R A V I T Y  IN 2 + 1 D I M E N S I O N S  

In this section let us consider the Brans-Dicke theory of gravity in 2 + 1 
dimensions and apply it to solve the same problem of obtaining the exterior 
gravitational field due to a circularly symmetric matter distribution. 

The Brans-Dicke field equations in the absence of  matter are given by 

1 1 g R~,v -sg,,vR = +(co/@2)(q~..q~.v - 2g.v~b' q~.p) + (1/4,)(~,.;~) (16a)  

E2q~ = 0 (16b) 
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where ~b is the scalar field and co is a free parameter to be determined by 
experiments. In 3 + 1 spacetime, usually (but not always) the theory is 
expected to reduce to general relativity when co ~ ~ (Romero and Barros, 
1993). 

Since we are assuming a static and circularly symmetric matter distri- 
bution, we should start from the metric tensor given by equation (9) and a 
scalar field ~b = q~(r). Then, equations (16a) and (16b) become 

P ' / r  = coo 2/2 - -  N'0  (17a) 

N ' / r  = (0)/2 + 1)02 - P ' 0  + 0 '  (17b) 

N '2 - N ' P '  + N "  = -co02/2 + O/r  (17c) 

where 0 = qS'/~b and 4 / =  &k/dr ,  P ' =  dP /dr ,  etc. The general solution of 
this system of equations leads to the metric (after some obvious simplifying 
coordinate transformations) 

ds 2 = rZD dt 2 _ ~.r2(D + B) dr 2 _ r 2 dO 2 (18a) 

D, B, and )~ are integration constants with D = B ( B  + 1 ) - 1 ( B W / 2  - 1). On 
the other hand, the scalar field is given by 

q~ = q~0 re (18b) 

with ~bo = const. 
Looking at equation (18a), we verify that this metric has the following 

properties: (a) it has no singularities for r r 0; (b) the spacetime is not 
asymptotically flat. 

6. F I N A L  R E M A R K S  

The investigation of gravitation in 2 + 1 dimensions was primarily 
concerned with the failure to construct a successful quantum theory of 
gravity in 3 + 1 dimensions. Nevertheless, the subject has recently called the 
attention of theorists to some of its nonquantum aspects, such as the 
problem of the 'breakdown' of general relativity in lower dimensions. At 
this point, it seems that a natural and legitimate question arises inevitably: 
what theory could substitute for general relativity in lower dimensions? 
Should such a theory, at least from an epistemological point of view, have 
what is usually called a 'Newtonian limit'? 

A P P E N D I X  

The constant A in equation (13) can be eliminated by the coordinate 
transformation dt = A & ,  dr = A dp. Thus, puttng C = A 2B, the line element 



2098 Romero and Dahia 

takes the simpler form 

ds 2 = C(ln p) 4(d'~2 - d p  2 - p2 dO 2) ( h l )  

Going further, it is possible to determine the remaining constant which 
appears in (A1) in terms of the mass M of the matter  distribution. Indeed, 
let us consider the following procedure. First we make the coordinate 
transformation p = e UKr, Z : e UKt and redefine the constant C by putting 
C = e - : /KK4.  Thus the line element (A1) becomes 

ds z = 2(r)(dt 2 - dr 2 - r 2 dO 2) (A2) 

where 2(r) = [ln(erK)] 4. Now, the constant K must be a function of  M and 
we can see that if K ~ 0 then 2(r) -o 1 and (A2) goes over the metric of  
Minkowski spacetime which corresponds to M = 0. Hence, for small values 
of  K we have goo -~ 1 + 4K in(r). On the other hand, in the weak-field 
approximation we have goo -~ 1 + 2q~ (see ref. [10]), where we are taking the 
speed of light c = 1 and r is given by eq. (2). Comparing the two 
expressions for g00 we get K = G M / 2 .  

Analogously, in the case of  Brans -Dicke  metric (eq. 18a) the constant 
B is determined by the simple following argument. As is well known, if 
there is no matter  (M = 0) the spacetime must be flat and Brans -Dicke  
theory should give the same result as Einstein theory. In this case the scalar 
field q~ is constant and is to be identified to G - 1  As a consequence, B and 
D tend to zero if M ~ 0. Again, in the weak-field approximation we must  
have goo "~ 1 + D In(r). Applying the same reasoning as before we conclude 
that D = 2 G M  and ~b 0 = G -  i. 
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